
KE-Quantum Newsletter 2024년 12월 [1]

HIGHLIGHT

🔼 영국 정부, 양자 컴퓨팅 및 네트워킹 기술 개발, 상 용화에 £ 9.5M(한화 약 154억원) 투자 (약) 獨 슈투트가르트 컨소시엄 OHMI, 보철물 제어 신경 신호 감지 양자 센서 개발 (신) 아일랜드 Equal1社, 실리콘 기반 양자 컴퓨터의 기술 발전 시연에 성공

KE-OSTCC는 유럽 내 양자과학기술 관련 정책, 대학, 연구기관, 산업계 동향을 담은 Newsletter를 격주 단위 발간

정책 동향

○ 영국, 양자 컴퓨팅 및 네트워킹 기술 개발에 £9.5M 투자(11.30)

- 영국 정부가 양자 컴퓨팅 및 네트워킹 기술 개발, 상용화를 위해 £9.5M(한화 약 154억원) 규모의 공모전을 시작
- 해당 공모전은 양자 컴퓨팅과 네트워킹 기술을 결합한 하이브리드 프로젝트를 장려하며, 영국에 등록된 기업들만 참여 가능

○ 프랑스 정부, Atos社 양자 컴퓨팅 사업부 인수에 €625M 입찰(11.26)

- 프랑스 정부가 자국의 핵심 기술 유출 방지를 위해 IT기업 Atos*의 슈퍼 컴퓨터, 양자 컴퓨터, AI 사업부 인수에 €625M(한화 약 8,900억원)을 제안
- * Atos는 해당 사업에서 '23년 €570M(한화 약 8,495억원)의 매출을 올렸으며, 현재 €2.9B(한화 약 4조 3,225억원)의 부채로 구조조정 단행 중

2 학·연구계 동향

○ 獨 슈투트가르트 컨소시엄, 보철물 제어 신경 신호 감지 양자 센서 개발(12.4)

- 독일 슈투트가르트의 다학제 컨소시엄 OHMI는 다이아몬드로

만들어진 광학 감지 자기공명(ODMR) 장치를 이용한 양자 센서로 매우 작고 빠른 신경 신호를 감지하는 기술을 개발, 이를 통해 보철물, 보조기구 제어 가능성 발견

○ 英 글래스고大 주축으로 양자 기술 허브(QEPNT) 출범(12.3)

- 영국이 새로운 국가 안보 및 중요 인프라를 지원하는 양자 기반 위치, 네비게이션 및 타이밍 허브인 QEPNT*를 출범
- * UK hub for Quantum Enabled Positioning, Navigation and Timing(QEPNT)은 영국 연구혁신기구(UKRI), 공학·물리과학연구위원회(EPSRC)가 출범시킨 5개 양자 허브 중 하나로, 글래스고大를 주축으로 고성능, 소형, 저비용 양자 기술을 개발할 예정

3 산업계 동향

○ Equal1社, 실리콘 기반 양자 컴퓨터의 기술 발전 시연에 성공(12.3)

- 아일랜드의 실리콘 기반 양자 컴퓨팅 개발 업체인 Equal1社는 고성능 큐비트 매트릭과 확장 가능한 양자 컨트롤러 칩을 포함한 실리콘 기반 양자 컴퓨팅을 발표, 시연

○ 英 ORCA Computing社, Jij Inc.社와 양자 솔루션 개발 파트너십 체결(12.3)

- 영국의 ORCA Computing社는 일본의 Jij Inc.와 물류, 에너지 계획, 제조 최적화를 위한 고급 솔루션 개발을 목표로 양자 알고리즘과 광자 양자 시스템을 결합하는 전략적 파트너십을 체결
- '23년 채택된 히로시마 협정과 연계되어 양국 스타트업 간 최초의 포괄적 양자 컴퓨팅 협력으로, 이를 통해 양국의 기술 및 산업 발전을 가속화 할 계획

○ Pasqal社의 100큐비트 양자컴퓨터, 율리히 연방과학연구소에 설치(12.2)

- EuroHPC JU의 프로젝트 High-Performance Computer and Quantum Simulator hybrid(HPCQS)*의 일환으로 율리히 연방과학연구소의 율리히 슈퍼컴퓨팅 센터(JSC)에 Pasqal社의 100큐비트 양자 컴퓨터가 설치됨
- * HPCQS 프로젝트는 EuroHPC JU와 오스트리아, 프랑스, 독일, 아일랜드, 이탈리아, 스페인 등 유럽 6개국이 참여하고 있는 고성능 양자 컴퓨터를 기존 슈퍼 컴퓨터와 연결하여 하이브리드 시스템 구축을 목표로 하는 프로젝트

유럽 행사 및 유관기관 일정		
기간	내용	
1.14~17	국제 양자 시뮬레이션 컨퍼런스	
1.20~24	국제 고에너지 양자물리학 컨퍼런스	
2.23~25	양자 인공 지능과 최적화 2025 (QAIO 2025)	
3.24~27	IEEE 양자통신 및 학습을 위한 양자컴퓨팅 컨퍼런스	
3.25~26	프랑스 양자 네트워크 서밋 2025	
4.2~4	영국 양자 컴퓨팅 확장성 컨퍼런스 2025	
	제3회 양자 물질 및 기술 국제 컨퍼런스 (ICQMT2025)	

주요 발간 보고서		
발간일	제목	
2.28	영국 규제호라이즌위원회(RHC), 양자기술응용 규제 보고서	
3.6	덴마크혁신센터, 한국 양자기술 현황 및 한국과의 협력 전망 보고서	
3.6	QuIC(유럽양자산업컨소시엄), 양자기술의 글로벌 특허 현황 백서	
3.18	유럽혁신위원회(EIC) 2023 임팩트 보고서	
4.12	유럽양자플래그십, 유럽 양자기술 핵심성과지표 보고서	
4.15	유럽양자플래그십, 양자기술 지식재산권 가이드라인	
6.6	UKQuantum, 영국 양자기술 선언문	
6.6	영국 왕립공학학회, 영국 양자기술 인프라 현황 보고서	
7.2	EU, 2024년 디지털 10년 정책 현황 보고서 발표	
9.3	QuantERA, 2023년 양자기술 지원사업 프로젝트	
9.5	네덜란드 QDNL, 양자센서 핵심 구성요소 및 시장동향 백서	
10.1	영국 과학기술시설위원회(STFC) 양자 기술 전략 2024	

문의	이슬기 연구원 (sklee0626@k-erc.eu)
발행처	한-유럽 양자과학기술협력센터 Korean-Europe Quantum Science Technology Cooperation Center
기술자문	박기민 (Palacký University)

※ 본 자료는 과학기술정보통신부에서 추진하는 양자기술 국제협력 강화사업 지원으로 작성되었습니다.